Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10523882 | Operations Research for Health Care | 2014 | 8 Pages |
Abstract
In this study we explore a model to optimize the Intensive Care Unit (ICU) discharging decisions prior to service completion as a result of capacity-constrained situation under uncertainty. Discharging prior to service completion, which is called demand-driven discharge or premature discharging, increases the chance that a patient to be readmitted to the ICU in the near future. Since readmission imposes an additional load on ICUs, the cost of demand-driven discharge is pertained to the surge of readmission chance and the length of stay (LOS) in the ICU after readmission. Hence, the problem is how to select a current patient in the ICU for demand-driven discharge to accommodate a new critically ill patient. In essence, the problem is formulated as a stochastic dynamic programming model. However, even in the deterministic form i.e. knowing the arrival and treatment times in advance, solving the dynamic programming model is almost unaffordable for a sizable problem. This is illustrated by formulating the problem by an integer programming model. The uncertainties and difficulties in the problem are convincing reasons to use the optimization-simulation approach. Thus, using simulations, we evaluate various scenarios by considering Weibull distribution for the LOS. While it is known that selecting a patient with the lowest readmission risk is optimum under certain conditions and supposing a memory-less distribution for LOS; we remark that when LOS is non-memory-less, considering readmission risk and remaining LOS rather than just readmission risk leads to better results.
Related Topics
Health Sciences
Medicine and Dentistry
Public Health and Health Policy
Authors
S. Zahra Hosseinifard, Babak Abbasi, James P. Minas,