Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10523975 | Operations Research Letters | 2013 | 5 Pages |
Abstract
This paper investigates two problems related to the determination of critical edges for the minimum cost assignment problem. Given a complete bipartite balanced graph with n vertices on each part and with costs on its edges, kMost Vital Edges Assignment consists of determining a set of k edges whose removal results in the largest increase in the cost of a minimum cost assignment. A dual problem, Min Edge Blocker Assignment, consists of removing a subset of edges of minimum cardinality such that the cost of a minimum cost assignment in the remaining graph is larger than or equal to a specified threshold. We show that kMost Vital Edges Assignment is NP-hard to approximate within a factor c<2 and Min Edge Blocker Assignment is NP-hard to approximate within a factor 1.36. We also provide an exact algorithm for kMost Vital Edges Assignment that runs in O(nk+2). This algorithm can also be used to solve exactly Min Edge Blocker Assignment.
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
Cristina Bazgan, Sonia Toubaline, Daniel Vanderpooten,