Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10525760 | Statistical Methodology | 2005 | 7 Pages |
Abstract
Generalized linear models are well-established generalizations of the linear models used for regression and analysis of variance. They allow flexible mean structures and general distributions, other than the linear link and normal response assumed in regression. Further enhancements using ideas from multivariate analysis improve power and precision by modelling dependencies between response variables. This paper focuses on the specific case of regression models for bivariate Bernoulli responses and investigates their analysis using a Bayesian approach. The important problem of renal arterial obstruction is considered, as a medical application of these models.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
Mehmet A. Cengiz,