Article ID Journal Published Year Pages File Type
10525760 Statistical Methodology 2005 7 Pages PDF
Abstract
Generalized linear models are well-established generalizations of the linear models used for regression and analysis of variance. They allow flexible mean structures and general distributions, other than the linear link and normal response assumed in regression. Further enhancements using ideas from multivariate analysis improve power and precision by modelling dependencies between response variables. This paper focuses on the specific case of regression models for bivariate Bernoulli responses and investigates their analysis using a Bayesian approach. The important problem of renal arterial obstruction is considered, as a medical application of these models.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
,