Article ID Journal Published Year Pages File Type
10527177 Stochastic Processes and their Applications 2015 15 Pages PDF
Abstract
We consider critical site percolation on the triangular lattice in the upper half-plane. Let u1,u2 be two sites on the boundary and w a site in the interior. It was predicted by Simmons et al. (2007) that the ratio P(nu1↔nu2↔nw)2/P(nu1↔nu2)⋅P(nu1↔nw)⋅P(nu2↔nw) converges to KF as n→∞, where x↔y denotes that x and y are in the same cluster, and KF is a constant. Beliaev and Izyurov (2012) proved an analog of this in the scaling limit. We prove, using their result and a generalized coupling argument, the earlier mentioned prediction. Furthermore we prove a factorization formula for P(nu2↔[nu1,nu1+s];nw↔[nu1,nu1+s]), where s>0.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,