Article ID Journal Published Year Pages File Type
10527208 Stochastic Processes and their Applications 2013 30 Pages PDF
Abstract
We consider N independent stochastic processes (Xj(t),t∈[0,T]), j=1,…,N, defined by a one-dimensional stochastic differential equation with coefficients depending on a random variable ϕj and study the nonparametric estimation of the density of the random effect ϕj in two kinds of mixed models. A multiplicative random effect and an additive random effect are successively considered. In each case, we build kernel and deconvolution estimators and study their L2-risk. Asymptotic properties are evaluated as N tends to infinity for fixed T or for T=T(N) tending to infinity with N. For T(N)=N2, adaptive estimators are built. Estimators are implemented on simulated data for several examples.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , ,