Article ID Journal Published Year Pages File Type
10527291 Stochastic Processes and their Applications 2012 30 Pages PDF
Abstract
We study the dynamics of the Burgers equation on the unit interval driven by affine linear noise. Mild solutions of the Burgers stochastic partial differential equation generate a smooth perfect and locally compacting cocycle on the energy space. Using multiplicative ergodic theory techniques, we establish the existence of a discrete non-random Lyapunov spectrum for the cocycle. We establish a local stable manifold theorem near a hyperbolic stationary point, as well as the existence of local smooth invariant manifolds with finite codimension and a countable global invariant foliation of the energy space relative to an ergodic stationary point.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,