Article ID Journal Published Year Pages File Type
10527364 Stochastic Processes and their Applications 2014 24 Pages PDF
Abstract
We study the optimal stopping problem for dynamic risk measures represented by Backward Stochastic Differential Equations (BSDEs) with jumps and its relation with reflected BSDEs (RBSDEs). The financial position is given by an RCLL adapted process. We first state some properties of RBSDEs with jumps when the obstacle process is RCLL only. We then prove that the value function of the optimal stopping problem is characterized as the solution of an RBSDE. The existence of optimal stopping times is obtained when the obstacle is left-upper semi-continuous along stopping times. Finally, we investigate robust optimal stopping problems related to the case with model ambiguity and their links with mixed control/optimal stopping game problems. We prove that, under some hypothesis, the value function is equal to the solution of an RBSDE. We then study the existence of saddle points when the obstacle is left-upper semi-continuous along stopping times.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,