Article ID Journal Published Year Pages File Type
10536972 Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2010 7 Pages PDF
Abstract
We have studied the structural and enzymatic properties of a diguanylate cyclase from an obligatory anaerobic bacterium Desulfotalea psychrophila, which consists of the N-terminal sensor domain and the C-terminal diguanylate cyclase domain. The sensor domain shows an amino acid sequence homology and spectroscopic properties similar to those of the sensor domains of the globin-coupled sensor proteins containing a protoheme. This heme-containing diguanylate cyclase catalyzes the formation of cyclic di-GMP from GTP only when the heme in the sensor domain binds molecular oxygen. When the heme is in the ferric, deoxy, CO-bound, or NO-bound forms, no enzymatic activity is observed. Resonance Raman spectroscopy reveals that Tyr55 forms a hydrogen bond with the heme-bound O2, but not with CO. Instead, Gln81 interacts with the heme-bound CO. These differences of a hydrogen bonding network will play a crucial role for the selective O2 sensing responsible for the regulation of the enzymatic activity.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,