Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10537614 | Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics | 2005 | 12 Pages |
Abstract
A major 2S albumin allergen, Ses i 1, from white sesame seeds was purified to homogeneity, characterized and identified using proteomic techniques. Ses i 1 exhibited a molecular weight of 12062 Da, although an extensive C-terminal clipping of the small subunit was observed. In addition, the N-terminal glutamine of the small subunit had been converted to pyroglutamate and a variant of the large subunit which had lost the N-terminal glutamine was also detected. The protein was thermo-stable up to 90 °C at neutral and acid pH, retaining its monomeric state and showing minimal alterations, which were reversible on cooling, in a predominantly α-helical secondary structure, as shown by circular dichroism and Fourier transform-infrared spectroscopy. Ses i 1 was also highly resistant to digestion using a physiologically relevant in vitro gastrointestinal model system. After 2 h of gastric digestion, the allergen remained completely intact and only the small subunit was cleaved during 2 h of subsequent duodenal digestion, leaving a major IgE epitope region of this protein intact. Neither prior heating of the Ses i 1 nor the presence of the physiological surfactant phosphatidylcholine affected the pattern of proteolysis. These findings are consistent with those found for the 2S albumin allergen from Brazil nut, Ber e 1, and suggest that Ses i 1 may preserve its structure from the degradation in the gastrointestinal tract, a property thought to be crucial for both a protein to sensitise the mucosal immune system and provoke an allergic reaction in a sensitised individual.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
F. Javier Moreno, Bárbara M. Maldonado, Nikolaus Wellner, E.N. Clare Mills,