Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10537689 | Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics | 2005 | 6 Pages |
Abstract
Antigen B (AgB), an immunodominant component of the cestode parasite Echinococcus granulosus, presents homology to and shares apparent structural similarities with helix-rich hydrophobic ligand binding proteins (HLBPs) from other cestodes. In order to investigate the fatty acid binding properties of AgB, two of its subunit components (rAgB8/1 and rAgB8/2) were expressed in Escherichia coli and purified, and the native antigen was purified from the hydatid cyst fluid by affinity chromatography using a monoclonal antibody raised against rAgB8/1. The interaction of the purified native and recombinant proteins with the fluorescent ligands DAUDA, ANS, DACA and 16-AP was investigated. The palmitic acid derived fluorescent ligand, 16-AP, showed the greatest enhancement in fluorescence when bound to native AgB or to its recombinant subunits, and the dissociation constants for 16-AP binding were determined. Surprisingly, in contrast to HLBPs from other cestodes, interactions with other fatty acids, including palmitic acid, caused an increase in fluorescence instead of competing with 16-AP. Our results suggest that AgB might have evolved different functions in the binding of hydrophobic compounds, dependent on cestode environment.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Gustavo Chemale, Henrique B. Ferreira, John Barrett, Peter M. Brophy, Arnaldo Zaha,