Article ID Journal Published Year Pages File Type
10537777 Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2010 9 Pages PDF
Abstract
At the first glance CK2α, the catalytic subunit of protein kinase CK2, is a rigid molecule: in contrast to many eukaryotic protein kinases in CK2α the canonical regulatory key elements like the activation segment occur exclusively in their typical active conformations. This observation fits well to the constitutive activity of the enzyme, meaning, its independence from phosphorylation or other characteristic control factors. Most CK2α structures are based on the enzyme from Zea mays, supplemented by an increasing number of human CK2α structures. In the latter a surprising plasticity of important ATP-binding elements - the interdomain hinge region and the glycine-rich loop - was discovered. In fully active CK2α the hinge region is open and does not anchor the ATP ribose, but alternatively it can adopt a closed conformation, form hydrogen bonds to the ribose moiety and thus retract the γ-phospho group from its functional position. In addition to this partially inactive state human CK2α was recently found in a fully inactive conformation. It is incompatible with ATP-binding due to a combination of a closed hinge and a collapse of the glycine-rich loop into the ATP cavity. These conformational transitions are apparently correlated with the occupation state of a remote docking site located at the interface to the non-catalytic subunit CK2β: if CK2β blocks this site, the fully active conformation of CK2α is stabilized, while the binding of certain small molecule seems to favour the partially and fully inactive states. This observation may be exploited to design effective and selective CK2 inhibitors.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,