Article ID Journal Published Year Pages File Type
10537919 Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2005 8 Pages PDF
Abstract
Human lactate dehydrogenase (LDH) is thought to contribute to the oxidation of glyoxylate to oxalate and thus to the pathogenesis of disorders of endogenous oxalate overproduction. Glyoxylate reductase (GRHPR) has a potentially protective role metabolising glyoxylate to the less reactive glycolate. In this paper, the kinetic parameters of recombinant human LDHA, LDHB and GR have been compared with respect to their affinity for glyoxylate and related substrates. The Km values and specificity constants (Kcat/KM) of purified recombinant human LDHA, LDHB and GRHPR were determined for the reduction of glyoxylate and hydroxypyruvate. KM values with glyoxylate were 29.3 mM for LDHA, 9.9 mM for LDHB and 1.0 mM for GRHPR. For the oxidation of glyoxylate, KM values were 0.18 mM and 0.26 mM for LDHA and LDHB respectively with NAD+ as cofactor. Overall, under the same reaction conditions, the specificity constants suggest there is a fine balance between the reduction and oxidation reactions of these substrates, suggesting that control is most likely dictated by the ambient concentrations of the respective intracellular cofactors. Neither LDHA nor LDHB utilised glycolate as substrate and NADPH was a poor cofactor with a relative activity less than 3% that of NADH. GRHPR had a higher affinity for NADPH than NADH (KM 0.011 mM vs. 2.42 mM). The potential roles of LDH isoforms and GRHPR in oxalate synthesis are discussed.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,