Article ID Journal Published Year Pages File Type
10544109 Food Chemistry 2005 10 Pages PDF
Abstract
The effects of fat content and post-slaughter ascorbic acid (AA) infusion on microbial and physicochemical qualities of beef patties processed by electron beam irradiation were investigated in a 4 °C storage trial. Beef muscles from AA-infused or control animals were ground and mixed with tallow to achieve a final fat content of 4%, 17% and 30%, respectively. Beef patties were irradiated at 5 and 10 kGy with a linear electron beam accelerator. Non-irradiated and non-infused ground beef patties served as a control. The addition of fat significantly (p<0.05) increased aerobic, total coliform, E. coli, and psychrotrophic bacteria counts in beef patties during storage. Irradiation at both dosages exerted a pasteurization effect on psychrotrophic bacteria for up to 7 days of storage. No viable aerobic, total coliform, or E. coli bacteria were detected in any irradiated beef patties during storage. Physicochemical changes caused by lipid oxidation and surface discoloration of beef patties were significantly (p<0.05) increased by both the addition of fat and irradiation processing. Beef patties made from AA-infused animals did not alter bacterial counts. Instead, post-slaughter infusion of AA exerted a pro-oxidant effect in the beef patties that led to a significant (p<0.0.5) increase in lipid oxidation and surface discoloration of stored patties.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,