Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10548105 | Journal of Chromatography A | 2005 | 10 Pages |
Abstract
A headspace-solid-phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) method has been proposed for the simultaneous determination of odorous trihalogenated anisoles in water. Parameters affecting efficiency of HS-SPME procedure, such as the selection of the SPME coating, extraction time, temperature and ionic strength were optimized. The commercially available polydimethylsiloxane (PDMS 100 μm) fiber appears to be the most suitable for the simultaneous determination of these compounds. Run-to-run precision with relative standard deviations (R.S.D.s) between 5 and 15% were obtained for most of the compounds except for 2,5-dicloro-6-bromo-anisole, 2,3-dibromo-6-chloroanisole, pentachloro- and pentabromoanisole (>20%). The method was linear over two orders of magnitude, and detection limits were compound dependent and ranged from 0.03 ng/L for 2,4,6-trichloroanisole to 0.25 ng/L for 2,3-dibromo-6-chloroanisole. The HS-SPME-GC-MS procedure was tested using real samples and relatively good standard deviations were obtained when using p-iodoanisole as internal standard for quantification. This is the first time that the individual identification of odorous trihalogenated chloro-bromoanisoles has been reported, being HS-SPME-GC-MS a suitable method for simultaneous determination of these compounds in water at concentration levels below their odor limit of detection.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Alfredo DÃaz, Francesc Ventura, Ma. Teresa Galceran,