Article ID Journal Published Year Pages File Type
1055497 Journal of Environmental Management 2016 8 Pages PDF
Abstract

•Strontium(Sr(II)) bio-sorbent is studied for removal and recovery from seawater.•Alginate microsphere exhibits superior Sr(II) adsorption capacity (≈110 mg/g).•Adsorption mechanism is ion exchange between Ca(II) in microsphere and Sr(II).•Using CaCl2 regenerant, alginate microsphere is reusable without capacity loss.•Despite of concentrated minerals, microsphere shows good Sr(II) uptake in seawater.

In this paper, we investigated alginate microspheres as a low-cost adsorbent for strontium (Sr(II)) removal and recovery from seawater. Alginate microspheres have demonstrated a superior adsorption capacity for Sr(II) ions (≈110 mg/g). A Freundlich isotherm model fits well with the Sr(II) adsorption of an alginate microsphere. The mechanism of Sr(II) adsorption is inferred as an ion exchange reaction with Ca(II) ions. The effects of the solution pH and co-existing ions in seawater are also investigated. Except for a pH of 1–2, Sr(II) adsorption capacity is not affected by pH. However, increasing the seawater concentration of metal cations seriously decreases Sr(II) uptake. In particular, highly concentrated (15,000 mg/L) Na(I) ions significantly interfere with Sr(II) adsorption. Sr(II) desorption was performed using 0.1 M HCl and CaCl2. Both regenerants show an excellent desorption efficiency, but the FTIR spectrum reveals that the chemical structure of the microsphere is destroyed after repeated use of HCl. Conversely, CaCl2 successfully desorbed Sr(II) without damage, and the Sr(II) adsorption capacity does not decrease after three repeated uses. The alginate microsphere was also applied to the adsorption of Sr(II) in a real seawater medium. Because of inhibition by co-existing ions, the Sr(II) adsorption capacity was decreased and the adsorption rate was retarded compared with D.I. water. Although the Sr(II) adsorption capacity was decreased, the alginate microsphere still exhibited 17.8 mg/g of Sr(II) uptake in the seawater medium. Considering its excellent Sr(II) uptake in seawater and its reusability, an alginate microsphere is an appropriate cost-effective adsorbent for the removal and recovery of Sr(II) from seawater.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , ,