Article ID Journal Published Year Pages File Type
1055738 Journal of Environmental Management 2014 6 Pages PDF
Abstract

•This research treated MSWI fly ash by the electrocoagulation technique.•It employed the functions of water washing and changing the composition of fly ash.•MSWI fly ash can be converted into Friedel's salt via electrocoagulation.•It can stabilize the heavy metals in the fly ash to adhere to regulatory limits.

This research investigated the electrocoagulation of municipal solid waste incineration (MSWI) fly ash at a liquid-to-solid ratio (L/S) of 20:1. The leachate that was obtained from this treatment was recovered for reutilization. Two different anodic electrodes were investigated, and two unit runs were conducted. In Unit I, the optimum anode was chosen, and in Unit II, the optimum anode and the recovered leachate were used to replace deionized water for repeating the same electrocoagulation experiments. The results indicate that the aluminum (Al) anode performed better than the iridium oxide (IrO2) anode. The electrocoagulation technique includes washing with water, changing the composition of the fly ash, and stabilizing the heavy metals in the ash. Washing with water can remove the soluble salts from fly ash, and the fly ash can be converted into Friedel's salt (3CaO·Al2O3·CaCl2·10H2O) under an uniform electric field and the sacrificial release of Al+3 ions, which stabilizes the toxic heavy metals and brings the composition of the fly ash to within the regulatory limits of the toxicity characteristic leaching procedure (TCLP). Use of the Al anode to manage the MSWI fly ash and the leachate obtained from the electrocoagulation treatment is therefore feasible.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,