Article ID Journal Published Year Pages File Type
10560617 Talanta 2005 6 Pages PDF
Abstract
We report a nanoscale lipid membrane-based sensor of conjugated polydiacetylene (PDA) vesicles for fluorescence detection of organic amines. The vesicle sensor was constructed by incorporation of a BODIPY fluorescent dye into the PDA vesicles. The fluorescent properties of the resulting vesicles can be manipulated by adjusting lipid components, and are controlled by environmental and solution conditions. The fluorescence of the BODIPY dye was significantly quenched in the polymerization of diacetylene lipid vesicles by a UV irradiation process. However, it was sufficiently recovered by external stimuli such as a hike of solution pH. The fluorescence recovery process was reversible, and a decrease in solution pH resulted in repeated quenching. The reported system transforms an external stimulus into a large fluorescence intensity change, demonstrating great potential in developing new signal reporting method for biosensor design. The quench-recovery phenomenon of the BODIPY-PDA is believed to be related to the energy transfer between the dye and the PDA conjugate backbone. The vesicle sensor was applied for detecting an organic amine, triethylamine (TEA) and a large linear relationship was obtained between the increase in fluorescence intensity and the concentrations of TEA. The detection limit of TEA by vesicle sensors using fluorescence recovery was found to be 10 μM.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,