Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10560699 | Talanta | 2011 | 6 Pages |
Abstract
Parallel computing was tested regarding its ability to speed up chemometric operations for data analysis. A set of metabolic samples from a second hand smoke (SHS) experiment was analyzed with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCÂ ÃÂ GC-TOFMS). Data was further preprocessed and analyzed. The preprocessing step comprises background correction, smoothing and alignment of the chromatographic signal. Data analysis was performed by applying t-test and partial least squares projection to latent structures discriminant analysis (PLS-DA). The optimization of the algorithm for parallel computing led to a substantial increase in performance. Metabolic fingerprinting showed a discrimination of the samples and indicates a metabolic effect of SHS.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Thomas Gröger, Ralf Zimmermann,