Article ID Journal Published Year Pages File Type
10560814 Talanta 2005 9 Pages PDF
Abstract
A new class of polymeric resin has been synthesized by grafting Merrifield chloromethylated resin with (dimethyl amino-phosphono-methyl)-phosphonic acid (MCM-DAPPA), for the preconcentration of U(VI), Th(IV) and La(III) from both acidic wastes and environmental samples. The various chemical modification steps involved during grafting process are characterized by FT-IR spectroscopy, 31P and 13C-CPMAS (cross-polarized magic angle spin) NMR spectroscopy and CHNS/O elemental analysis. The water regain capacity data for the grafted polymer are obtained from thermo-gravimetric (TG) analysis. The influence of various physico-chemical parameters during the quantitative extraction of metal ions by the resin phase are studied and optimized by both static and dynamic methods. The significant feature of this grafted polymer is its ability to extract both actinides and lanthanides from high-level acidities as well as from near neutral conditions. The resin shows very high sorption capacity values of 2.02, 0.89 and 0.54 mmol g−1 for U(VI), 1.98, 0.63 and 0.42 mmol g−1 for Th(IV) and 1.22, 0.39 and 0.39 mmol g−1 for La(III) under optimum pH, HNO3 and HCl concentration, respectively. The grafted polymer shows faster phase exchange kinetics (<5 min is sufficient for 50% extraction) and greater preconcentration ability, with reusability exceeding 20 cycles. During desorption process, all the analyte ions are quantitatively eluted from the resin phase with >99.5% recovery using 1 M (NH4)2CO3, as eluent. The developed grafted resin has been successfully applied in extracting Th(IV) from high matrix monazite sand, U(VI) from sea water and also U(VI) and Th(IV) from simulated nuclear spent fuel mixtures. The analytical data obtained from triplicate measurements are within 3.9% R.S.D. reflecting the reproducibility and reliability of the developed method.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,