Article ID Journal Published Year Pages File Type
10560909 Talanta 2005 6 Pages PDF
Abstract
The simultaneous determination of nitroaniline isomer mixtures by using spectrophotometric methods is a difficult problem in analytical chemistry, due to spectral interferences. By multivariate calibration methods, such as partial least squares (PLS), it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. Orthogonal signal correction (OSC) is a preprocessing technique used for removes the information unrelated to the target variables based on constrained principal component analysis. OSC is a suitable preprocessing method for partial least squares calibration of mixtures without loss of prediction capacity using spectrophotometric method. In this study, the calibration model is based on absorption spectra in the 200-500 nm range for 21 different mixtures of nitroaniline isomers. Calibration matrices were containing 1-21, 1-15 and 1-18 μg ml−1 of m-nitroaniline, o-nitroaniline and p-nitroaniline, respectively. The RMSEP for m-nitroaniline, o-nitroaniline and p-nitroaniline with OSC and without OSC were 0.6567, 0.2692, and 0.3134, and 1.3818, 1.2181, and 0.3953, respectively. This procedure allows the simultaneous determination of nitroaniline isomers in real matrix samples and good reliability of the determination was proved.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, ,