Article ID Journal Published Year Pages File Type
1056579 Journal of Environmental Management 2013 10 Pages PDF
Abstract

The long-term influence of a mine spill in soil was studied 12 years after the Aznalcóllar accident. Soils where the pyritic sludge was not removed, a fenced plot established for research purposes (2000 m2) and soils where the process of remediation was accomplished successfully were sampled and studied in detail. Soils were characterized at different depths, down to 100 cm depth, determining chemical parameters and total concentrations of major and trace elements. Moreover plants colonizing remediated (RE) and non remediated (NRE) soils were also analysed attending their potential risk for herbivores. Strong acidification was observed in the NRE soil except in surface (0–10 cm). The progressive colonization of natural vegetation, more than 90% of the fenced plot covered by plants, could facilitate this increased pH values in the top soil (pH 6). In the NRE soil, the successive oxidation and hydrolysis of sulphide in the deposited sludge on the surface after the accident resulted in a re-dissolution of the most mobile element (Cd, Cu and Zn) and a penetration to deeper layers. Trace element concentrations in plants growing in the NRE soil showed normal contents for higher plants and tolerable for livestock. Nitrogen and mineral nutrients were of the same order in both soils, and also normal for high plants and adequate for animal nutrition. Despite of the natural remediation of the NRE soil, results demonstrate that the remediation tasks carried out in all the area, the Guadiamar Green Corridor at present, were necessary to avoid the leaching of the most mobile elements and minimize the risk of contamination of groundwater sources, many of them close to the Doñana National Park.

► Remediated and non remediated soils were compared in depth (100 cm) 12 years after a mine accident. ► Accumulation of Cd, Cu, Zn at deep layers (60 cm) was recorded in non remediated soils. ► The immediate soil remediation after the accident mitigated leaching of trace elements. ► Plants analysed in both soils reached low aboveground trace element concentrations.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , ,