Article ID Journal Published Year Pages File Type
1056617 Journal of Environmental Management 2013 9 Pages PDF
Abstract

Invasive species pose a major threat to biodiversity which may be intensified by the effects of climate change, particularly if favourable climate conditions allow invasives to spread to new areas. This research explores the combined effects of climate change and soil drainage on the potential future distribution of Lantana camara L. (lantana) in Queensland, Australia. Lantana is an invasive woody shrub species that has a profound economic and environmental impact worldwide. CLIMEX was used to develop a process-based niche model of lantana to estimate its potential distribution under current and future climate. Two Global Climate Models (GCMs), CSIRO-Mk3.0 and MIROC-H, were used to explore the impacts of climate change. These models were run with the A1B and A2 scenarios for 2030, 2070 and 2100. Further refinements of the potential distributions were carried out through the integration of fine scale soil drainage data in a Geographic Information System (GIS). The results from both GCMs show a progressive reduction in climatic suitability for lantana in Queensland. The MIROC-H projects a larger area as remaining at risk of lantana invasion in 2100 compared to CSIRO-Mk3.0. Inclusion of soil drainage data results in a more refined distribution. Overall results show a dramatic reduction in potential distribution of lantana in Queensland in the long term (2100). However, in the short term (2030), areas such as South East Queensland and the Wet Tropics, both regions of significant ecological importance, remain at risk of invasion consistently under both GCMs and with both the climate only and climate and soil drainage models. Management of lantana in these regions will need to be prioritized to protect environmental assets of ecological significance.

► We model potential lantana distribution in Queensland, Australia. ► Impacts of climate change and soil drainage were incorporated into the model. ► Inclusion of soil drainage data produced a more restricted distribution. ► Overall results show climate suitability for lantana in the short term will remain similar. ► Climatic suitability for lantana will be reduced in the long term.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,