Article ID Journal Published Year Pages File Type
1056892 Journal of Environmental Management 2012 15 Pages PDF
Abstract

The aim of this study is to analyze the relationship among groundwater productivity data including specific capacity (SPC) and transmissivity (T) as well as its related hydrogeological factors in a bedrock aquifer, and subsequently, to produce the regional groundwater productivity potential (GPP) map for the area around Pohang City, Korea using a geographic information system (GIS) and a weights-of-evidence (WOE) model. All of the related factors, including topography, lineament, geology, forest, and soil data were collected and input into a spatial database. In addition, SPC and T data were collected from 83 and 81 well locations, respectively. Four dependent variables including SPC values of ≥6.25 m3/d/m (Case 1) and T values of ≥3.79 m2/d (Case 3) corresponding to a yield (Y) of ≥500 m3/d, and SPC values of ≥3.75 m3/d/m (Case 2) and T values of ≥2.61 m2/d (Case 4) corresponding to a Y of ≥300 m3/d were also input into a spatial database. The SPC and T data were randomly selected in an approximately 70:30 ratio to train and validate the WOE model. Tests of conditional independence were performed for the used factors. To assess the regional GPP for each dependent variable, W+ and W− of each factor’s rating were overlaid spatially. The results of the analysis were validated using area under curve (AUC) analysis with the existing SPC and T data that were not used for the training of the model. The AUC of Cases 1, 2, 3 and 4 showed 0.7120, 0.6893, 0.6920, and 0.7098, respectively. In the case of the dependent variables, Case 1 had an accuracy of 71.20% (AUC: 0.7120), which is the best result produced in this analysis. Such information and the maps generated from it could be used for groundwater management, a practice related to groundwater resource exploration.

► We analyze the relationship among groundwater productivity data and its related factors. ► The productivity data include specific capacity (SPC) and transmissivity (T) in the study. ► The productivity potential map is produced using a GIS and weights-of-evidence model. ► The relationship and maps could be used for groundwater management.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,