Article ID Journal Published Year Pages File Type
1057322 Journal of Environmental Management 2011 8 Pages PDF
Abstract

Excessive input of phosphorus into natural water bodies as a result of anthropogenic processes is an escalating factor that leads to eutrophication. Hence, quantifying the pathway of phosphorus throughout the socioeconomic system is essential for the selection of appropriate measures to mitigate phosphorus discharge. The study develops an analytical model of anthropogenic phosphorus flows within a socioeconomic system based on substance flow analysis. The model consists of five major subsystems: the phosphorous chemical industry, agriculture, animal feeding, human consumption, and waste management. The results show that the total input and output of phosphorus in Chaohu City over 2008 are 8517.70 ton (t) and 4682.76 t, respectively. The estimation of phosphorus discharged into local surface water is 544.22 t, which primarily comes from agriculture (391.99 t, 72.03%), followed by large-scale farming (55.70 t, 10.23%), rural consumption (56.81 t, 10.44%), urban consumption (30.42 t, 5.59%), and waste management (9.30 t, 1.71%). Intensive input of fertilizers in agricultural practices was identified as the most important source of phosphorus load on local surface water. Hence, we propose that the eutrophication of local water bodies could be addressed by optimizing local industrial structure, developing ecological and organic-based agriculture, and improving waste collection and disposal practices.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,