Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10574212 | Journal of Inorganic Biochemistry | 2006 | 11 Pages |
Abstract
Progress in the biology of myo-inositol hexakisphosphate (InsP6) has been delayed by the lack of a quantitative description of its multiple interactions with divalent cations. Our recent initial description of these [J. Torres, S. Dominguez, M.F. Cerda, G. Obal, A. Mederos, R.F. Irvine, A. Diaz, C. Kremer, J. Inorg. Biochem. 99 (2005) 828-840] predicted that under cytosolic/nuclear conditions, protein-free soluble InsP6 occurs as Mg5(H2L), a neutral complex that exists thanks to a significant, but undefined, window of solubility displayed by solid Mg5(H2L) · 22H2O (L is fully deprotonated InsP6). Here we complete the description of the InsP6-Mg2+-Ca2+ system, defining the solubilities of the Mg2+ and Ca2+ (Ca5(H2L) · 16H2O) solids in terms of Ks0 = [M2+]5[H2L10â], with pKs0 = 32.93 for M = Mg and pKs0 = 39.3 for M = Ca. The concentration of soluble Mg5(H2L) at 37 °C and I = 0.15 M NaClO4 is limited to 49 μM, yet InsP6 in mammalian cells may reach 100 μM. Any cytosolic/nuclear InsP6 in excess of 49 μM must be protein- or membrane-bound, or as solid Mg5(H2L) · 22H2O, and any extracellular InsP6 (e.g. in plasma) is surely protein-bound.
Related Topics
Physical Sciences and Engineering
Chemistry
Inorganic Chemistry
Authors
Nicolás Veiga, Julia Torres, Sixto DomÃnguez, Alfredo Mederos, Robin F. Irvine, Alvaro DÃaz, Carlos Kremer,