Article ID Journal Published Year Pages File Type
10574224 Journal of Inorganic Biochemistry 2006 6 Pages PDF
Abstract
The low-molecular weight water-soluble Fe(III) and Mn(III) porphyrins - in biologically relevant phosphate-buffered saline medium with ascorbic acid as a source of electrons, under aerobic conditions but without co-oxidant - catalyze the hydroxylation of anti-cancer drug cyclophosphamide to active metabolite 4-hydroxycyclophosphamide in yields similar or higher than those typically obtained by the action of liver enzymes in vivo. The Fe(III) meso tetrakis(2,6-difluoro-3-sulfonatophenyl)porphyrin, highly electron-deficient at the metal site, was the most effective catalyst. If proven viable in vivo, this methodology could be expanded to localized or systemic activation of the entire family of oxazaphosphorine-based (and many other) anti-cancer drugs and become a powerful tool for an aggressive treatment of tumors with less toxic side effects to the patient.
Related Topics
Physical Sciences and Engineering Chemistry Inorganic Chemistry
Authors
, , , ,