Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10576300 | Journal of Solid State Chemistry | 2005 | 8 Pages |
Abstract
Novel mixed potassium antimonates K0.59Mg0.53Sb0.47O2, K0.5Ni0.5Sb0.5O2, K0.5Co0.5Sb0.5O2 (rhombohedral P3-type structure), K0.56Ni0.52Sb0.48O2 and K0.86Co0.62Sb0.38O2 (hexagonal P2 type) have layered structures based on brucite-like (L,Sb)O6/3 sheets of edge-shared octahedra and interlayer K+ cations in trigonal prismatic coordination. The preference to form P2 and P3 structures rather than closely related O3 type is dictated by the large radius of K+ and the value of unit cell parameter a, restricted by average size of the cations randomly distributed in the octahedral sites within (L,Sb)O6/3 layer. The new phases reversibly absorb atmospheric moisture leading to the formation of hydrates with ca. 11% larger interlayer distances. The impedance spectroscopy of P2-type K0.56Ni0.52Sb0.48O2 and P3-type K0.59Mg0.53Sb0.47O2 ceramics shows relatively high ionic conductivity, presumably due to potassium cationic transport, with activation energies of 35±2 and 33±1 kJ/mol, respectively. At 573 K, the conductivity values are 0.016 S/cm for K0.56Ni0.52Sb0.48O2 and 0.021 S/cm for K0.59Mg0.53Sb0.47O2. Interaction with water vapor leads to increasing total conductivity.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Inorganic Chemistry
Authors
O.A. Smirnova, V.B. Nalbandyan, M. Avdeev, L.I. Medvedeva, B.S. Medvedev, V.V. Kharton, F.M.B. Marques,