Article ID Journal Published Year Pages File Type
1058035 Journal of Environmental Management 2009 7 Pages PDF
Abstract

The effects of turbulence intensity (velocity gradient, G (sāˆ’1)), Henry's law constant (H), and molecular weight (M) on the volatilization rates of organic compounds are examined using changes in the mass transfer coefficients (KOL (cm/min)) under specific liquid-mixing intensities. The selected compounds were divided into three groups according to their H values (mole in gas/mole in liquid, dimensionless), which ranged from 102 to 10āˆ’5. The relationship of the KOL relative to G, H and M was obtained via multiple regression. The obtained values of these parameters indicate that the primary factor affecting the KOL values of the high H compounds is their M values. The effects of the H values on the KOL values of the high H compounds can be neglected. On the other hand, the H value is the major factor determining the KOL values of the low H compounds. The changes in the KOL values of the different H compounds exhibit different profiles as the liquid-mixing intensity increases. The M and H values of middle H compounds possibly affect their KOL values. The effects of the liquid-mixing intensity on the KOL values of the organic compounds increase with increasing H values. The variation in the KOL values might be a result of the concentration of the organic compounds at the interface between the liquid and gas films. The empirical relationship between KOL and some selected parameters, G, H and M, is examined in this study. The obtained results can help to estimate volatilization loss of organic solutes in wastewater treatment facilities.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
,