Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10609242 | European Polymer Journal | 2005 | 9 Pages |
Abstract
Plasticized protein films were prepared by the casting method from water solution of sodium caseinate and plasticizers with the aim to obtain environmentally friendly materials for packaging applications. Mechanical properties (tensile strength, elongation and Young's modulus) of caseinate based films were determined versus ratio of protein to plasticizer, plasticizer type and relative humidity conditions. Among the different polyol-type plasticizers tested, glycerol (Gly) and triethanolamine (TEA) were the most efficient for the improvement of mechanical properties (high strains for low stresses). Further, chemical crosslinking between formaldehyde (HCHO) and free amino groups (ε-NH2) of sodium caseinate was performed to increase water resistance of TEA plasticized films. Optimal mechanical properties, i.e. elastic modulus of 105 MPa, tensile strength of 8-9 MPa for elongation at break about 110-125% were obtained for HCHO/ε-NH2 ratios higher than 1.35. Protein specific water solubility was determined from a 280 nm absorbance. For convenient crosslinker (HCHO) content sodium caseinate solubility can be lowered to less than 5 wt% after 24 h immersion in water.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Jean-Luc Audic, Bernard Chaufer,