Article ID Journal Published Year Pages File Type
10609261 European Polymer Journal 2005 9 Pages PDF
Abstract
Elastic behaviors of uniform star polymer chains with two to seven branches (namely, functionality f = 2-7) are investigated using Monte Carlo simulation and the bond fluctuation model. Here chain dimensions and thermodynamic properties of uniform star polymer chains during the process of tensile elongation are studied, and comparisons with linear chain are also made. Static properties of chains such as chain sizes and asphericities of chains are calculated, and g-value of g = 〈S2〉star/〈S2〉linear decreases with elongation ratio increasing for different functionality f. Thermodynamic properties such as average energy 〈U〉, free energy per bond 〈A′〉 and elastic force F are also investigated during the process of tensile elongation. In the meantime, scatting functions P(q) are calculated for star polymer chains with different functionality f. Additionally, we also discuss the influence of elongation ratio on scattering form factor. The impenetrability of the star cores is known to cause a discontinuity in the osmotic pressure showed through a peak in the scattering functions, and some different behaviors in the tensile process for uniform star chain are obtained.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,