Article ID Journal Published Year Pages File Type
10609273 European Polymer Journal 2005 11 Pages PDF
Abstract
The effect of a direct current discharge on the films of polypropylene and copolymers of propylene and hexene-1 synthesized with an isospecific catalytic system, rac-Me2SiInd2ZrCl2-polymethylaluminoxane, was investigated. The treatment of isotactic polypropylene films by the discharge did not affect the ratio of crystalline phases in the polymer to a measurable extent. However, for the plasma treated films of copolymers of propylene and hexene-1 (the hexene-1 content of 1-2 mol%), a structural transformation of γ-modification into α-modification has been noticed. The observed phase transition has no apparent relation to any changes in microstructure of the copolymer chain because melting temperature values and the stereoregularity parameters of the samples remained practically unchanged. An experimental investigation of the specific influence exerted by individual components of a direct current discharge on the crystalline structure of copolymers has been undertaken. The exposure to a quantum component of the discharge did not induce any changes in the phase composition of the irradiated samples. The heating of the samples led to a negligible change of their phase composition. It has been determined that the surface of polypropylene and propylene/hexene-1 copolymer films facing the cathode in the course of the direct current discharge treatment had an accumulated negative charge Q > 10 nC/cm2 which persisted for a long time afterwards. It has been suggested that the electrical field of a negative discharge may be the main cause of the γ-into α-phase transition in propylene/hexene-1 copolymers under the plasma effect. To verify this assumption, a propylene/hexene-1 copolymer film was charged under electron beam with energy of 4 keV. The electron beam treatment of the film resulted to the negative charge value of 11 nC/cm2. The electron beam irradiation has induced the phase transition which was quite similar to the transition observed as the result of plasma treatment. So, it may be concluded that the phase transition from crystal γ-modification to α-modification under the effect of direct current discharge which has been investigated for copolymers of propylene and hexene-1 is induced by electric field of the negative charge accumulated at the surface layers of the films of the copolymers.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,