Article ID Journal Published Year Pages File Type
10609642 European Polymer Journal 2011 8 Pages PDF
Abstract
Epoxies are an important family of shape memory polymers (SMP) due to their excellent stability and thermo-mechanical endurance and the high values of shape fixity and shape recovery. Actuators based on these materials can be designed for large tensile elongations (e.g., 75% or higher) or large recovered stresses (e.g., 3 MPa or higher). However, meeting these requirements simultaneously is a difficult task because changes in the crosslink density affect both variables in opposite ways. We show that an SMP based on an epoxy network with both chemical and physical crosslinks could be strained up to 75% in four repeated shape memory cycles with tensile stresses close to 3 MPa. Shape fixity and shape recovery values were close to 98% and 96%, respectively, for everyone of the cycles, without any significant change between the first and subsequent cycles.
Keywords
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , ,