Article ID Journal Published Year Pages File Type
10610574 Carbon 2005 8 Pages PDF
Abstract
Single-wall and multi-wall carbon nanotubes (SWNTs and MWNTs, respectively) of controlled diameter distribution were selectively grown by thermal decomposition of a botanical hydrocarbon, camphor, on a high-silica zeolite support impregnated with Fe-Co catalyst. Effects of catalyst concentration, growth temperature and camphor vapor pressure were investigated in wide ranges, and diameter distribution statistics of as-grown nanotubes was analyzed. High yields of metal-free MWNTs of fairly uniform diameter (∼10 nm) were grown at 600-700 °C, whereas significant amounts (∼30%) of SWNTs were formed at 850-900 °C within a narrow diameter range of 0.86-1.23 nm. Transmission electron microscopy and micro-Raman spectroscopy reveal that camphor-grown nanotubes are highly graphitized as compared to those grown from conventional CNT precursors used in chemical vapor deposition.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, ,