Article ID Journal Published Year Pages File Type
10610575 Carbon 2005 9 Pages PDF
Abstract
A homogeneous, isotropic porous matrix of activated carbon inside a portable steel cylinder is considered as the adsorption bed for natural gas (NG) which is idealized as pure methane for the purpose of simulation. The heat and fluid flow inside the porous adsorption bed are modeled using a volume averaging technique and Darcy-Brinkman formulation. The effective thermal conductivity of the activated carbon-methane system is calculated as a function of uptake according to the Luikov model. Heat generation due to the exothermic process of adsorption is considered. The governing equations are solved using an implicit finite volume method for the given boundary conditions. Three different models of adsorption are considered, namely (i) a no-flow model, (ii) flow model with uniform adsorption and (iii) a flow model with local adsorption. For each of these models, transient temperature profiles in the adsorption bed during the charging process are obtained, and the corresponding mass adsorption potentials are calculated. Parametric studies are performed to investigate the effects of gas inlet temperature and rate of charging on the maximum bed temperature and the time required to fill the cylinder.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,