Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10611286 | Carbon | 2005 | 7 Pages |
Abstract
We have developed a simple new method to control the diameter of carbon nanotubes (CNTs) using catalytic nanoparticle arrays fabricated by filling the pores of well-ordered porous anodic aluminum oxide (AAO) templates with a metal ion solution. Fe ion solution was used to fill the pores in which Co had been deposited electrochemically, and then the template was dried naturally on a magnet. After this process, the pores were widened in NaOH solution. Well-graphitized multi-walled CNTs were grown from almost all the pores and were very long in length and homogeneous in diameter. We were able to control the diameter of CNTs, simply, by changing the concentration of iron ion solution. For example, the average outer diameters of the CNTs are 7 ± 1.5, 13 ± 1, and 17 ± 1 nm when the concentrations of Fe ion in their mother solutions were 1.0 Ã 10â3, 3.0 Ã 10â3, and 6.0 Ã 10â3 M, respectively. The inner diameters of these CNTs corresponded to the calculated diameters of Fe nanoparticles by assuming that all Fe ions contained in each pore are reduced to a single nanoparticle. This means that homogeneous nanoparticles are made in each pore. Our new method could be used to fabricate homogeneous nanoparticles from most metal ion solutions.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Lily Kim, Eun-mi Lee, Shin-Je Cho, Jung Sang Suh,