Article ID Journal Published Year Pages File Type
10611361 Carbon 2005 7 Pages PDF
Abstract
A new catalyst (Ni/Mo/MgO) is reported, with which one can synthesize multi-walled carbon nanotube (MWNT) bundles with a yield of more than 45 times the amount of the pristine catalyst, using a methane-hydrogen mixture as precursor. Powder X-ray diffraction, Raman spectroscopy and thermal gravimetric analysis show that the purity of the as-prepared MWNTs is over 97%. The diameter of the carbon nanotubes is 9-20 nm, measured by high-resolution electron microscopy on 421 individual MWNTs. The high purity of the as-prepared MWNTs allows us to omit the usual complex purification process required for carbon nanotubes synthesized by chemical vapor deposition. Because of its durable high activity, the Ni/Mo/MgO catalyst in its pristine state is ideal for mass production of high-quality MWNTs. The synergism of nickel and molybdenum is considered the main reason for the high yield of carbon nanotubes.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , , , , , ,