Article ID Journal Published Year Pages File Type
10620193 Acta Materialia 2013 11 Pages PDF
Abstract
Nanoindentation has been used at room and elevated temperature to measure the spatial distribution of mechanical properties within Pb-free solder ball joints. The hardness, Young's modulus and creep behaviour of the phases formed in a Sn-Ag-Cu/Cu solder joint have been characterized at temperatures from 25 to 175 °C. The hardness and Young's modulus of Cu6Sn5 and Cu3Sn had a weak dependence on temperature, while the hardness and modulus of primary β-Sn, eutectic regions and electroplated Cu were sensitive to temperature. Nanoindentation was able to detect both mechanical anisotropy in Cu6Sn5 and the sluggish η′ → η phase transformation at 150-175 °C. In a second part of this study, Pb-free solder creep behaviour has been investigated by nanoindentation and compared with Pb-free creep behaviour models from the literature. A two-dimensional finite-element analysis of solder nanoindentation creep has been used to compare creep measurement methods, and the insights from this analysis can be then implemented in commercial finite-element codes for creep behaviour prediction at the microscale in microelectronic solder joints.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,