Article ID Journal Published Year Pages File Type
10620564 Acta Materialia 2011 10 Pages PDF
Abstract
Thermal treatment of supersaturated Ti1−xAlxN films (x ≈ 0.67) with a dominant ternary cubic-phase were performed in the 700-1000 °C range. Grazing incidence X-ray diffraction (GIXRD) shows that, for annealing temperatures up to 800 °C, the film structure undergoes the formation of coherent cubic AlN (c-AlN) and TiN (c-TiN) nanocrystallites via spinodal decomposition and, at higher temperatures (⩾900 °C), GIXRD shows that the c-AlN phase transforms into the thermodynamically more stable hexagonal AlN (h-AlN). X-ray absorption near-edge structure (XANES) at the Ti K-edge is consistent with spinodal decomposition taking place at 800 °C, while Al K-edge and N K-edge XANES and X-ray emission data show the nucleation of the h-AlN phase at temperatures >800 °C, in agreement with the two-step decomposition process for rock-salt structured TiAlN, which was also supported by X-ray diffraction patterns and first-principle calculations. Further, the resonant inelastic X-ray scattering technique near the N K-edge revealed that N2 is formed as a consequence of the phase transformation process.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , , , ,