Article ID Journal Published Year Pages File Type
10620583 Acta Materialia 2011 9 Pages PDF
Abstract
Recently, we have revealed that the atomic packing in both metallic liquids and supercooled liquids can be described globally by the spherical-periodic order (SPO), while the global feature of the glassy solids can be characterized by the local translational symmetry (LTS) imposed on the SPO (Liu XJ, et al. Phys Rev Lett 2010;105:155501). In this study, we have conducted a systematic study of the effects of chemical compositions and radiation resources on the evolution of pair distribution function (PDF) profiles in the model Zr-Cu and Zr-Cu-Al glass-forming systems, by theoretical atomistic simulations coupled with synchrotron X-ray scattering experiments. Our results indicate that the global symmetry feature is held very well even in some complex cases, as long as their short-range orders can be carefully identified.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,