Article ID Journal Published Year Pages File Type
10622487 Cement and Concrete Research 2005 11 Pages PDF
Abstract
Analyses of microsamples collected from Roman catacombs and samples of lime-pozzolana mortars hardened in the laboratory display higher contents in carbonated binder than other subaerial Roman monuments. The measured environmental data inside the Saint Callistus and Domitilla catacombs show a constant temperature of 15-17 °C, a high CO2 content (1700 to 3500 ppm) and a relative humidity close to 100%. These conditions and particularly the high CO2 concentration speed-up the lime calcitization roughly by 500% and reduce the cationic diffusion to form hydrous calcium aluminosilicates. The structure of Roman catacomb mortars shows (i) coarser aggregates and thicker beds on the inside, (ii) thin, smoothed, light and fine-grained external surfaces with low content of aggregates and (iii) paintings and frescoes on the outside. The observed high porosity of the mortars can be attributed to cracking after drying linked with the high binder content. Hardened lime lumps inside the binder denote low water/mortar ratios for slaking. The aggregate tephra pyroclasts rich in aluminosilicate phases with accessorial amounts of Ba, Sr, Rb, Cu and Pb were analysed through X-ray diffraction (XRD), electron microprobe analysis (EMPA) and also by environmental scanning electron microscopy (ESEM) to identify the size and distribution of porosity. Results support procedures using local materials, special mortars and classic techniques for restoration purposes in hypogeal backgrounds.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , , ,