Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10624330 | Ceramics International | 2016 | 17 Pages |
Abstract
In this study, the rheological behavior of electrospinning solutions containing different copper and calcium salts (Cu(NO3)2·3H2O, CuCl2, Ca(NO3)2·4H2O and CaCl2) were investigated. To find out the suitable electrospinning solution for producing the high purity CaCu3Ti4O12 nanofibers, solutions containing different copper and calcium salts were prepared and CaCu3Ti4O12 fibers with different morphological and size were produced. The results showed that the nature of the metals complexes in the ceramic solutions had an obvious effect on the rheological behavior of the electrospinning solutions. FTIR spectras of the electrospinning solutions demonstrated that the interaction between the metal ions and carbonyl groups in the polyvinylpyrrolidone unit occurred and the polyvinylpyrrolidone chains underwent conformational variations. Intensity of the interaction between the metal ions and polymer chains in chloride salts solutions is more than nitrate salts solutions in order to the viscosities of chloride solutions that are more than nitrate solutions. So, thinner high purity polycrystalline CaCu3Ti4O12 nanofibers with diameters ranging <200 nm were successfully synthesized by selecting a novel solution containing copper and calcium nitrates after sintering at 900 °C for 4 h.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
M. Mohammadi, P. Alizadeh, F.J. Clemens,