Article ID Journal Published Year Pages File Type
10624604 Ceramics International 2015 7 Pages PDF
Abstract
The combination of the attractive properties of graphene with excellent characteristics of other functional nanomaterials has become a popular pathway for achieving applications in multiple fields. Herein, reduced graphene oxide (RGO)/CeO2 nanocomposites with enhanced capacitive performance were designed and synthesized by a facile two-step approach with a self-assembly method followed by thermal treatment. The structure, morphology and composition of the resulting RGO/CeO2 nanocomposites were systematically investigated. The presence of RGO can prevent the aggregation and control the structures of the CeO2 nanocrystals in the annealing process. The nanocomposites as electrode materials for supercapacitor exhibited an enhanced capacitive performance due to the synergic effect between RGO nanosheets and CeO2 nanocrystals. The excellent capacitive performance of the RGO/CeO2 nanocomposites offer great promise for supercapacitor applications.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,