Article ID Journal Published Year Pages File Type
10625177 Ceramics International 2014 6 Pages PDF
Abstract
A tartaric acid-assisted sol-gel process was used to synthesize Li2MnSiO4 (SG-LMS) nanopowders with orthorhombic structures (Pmn21 space group). The Li-active SG-LMS nanoparticles were fully surrounded by a conducting amorphous carbon layer/matrix that was formed by carbonization of the tartaric acid during post-annealing of the dry gel. The SG-LMS electrode exhibited higher specific capacity and superior cycle retention as compared to the LMS electrode prepared by a conventional solid-state reaction. Such high electrochemical performance originated from the presence of a high-purity phase, a large surface area, and an efficient electron transport path facilitated by the conductive carbon coating of the SG-LMS electrode.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,