Article ID Journal Published Year Pages File Type
10625573 Ceramics International 2013 5 Pages PDF
Abstract
Molybdenum disilicide (MoSi2) based composites with various contents of carbon nanotubes (CNTs) were made by sintering in vacuum at 1500 °C for 1 h. Mechanical properties of these composites at room temperature revealed the addition of CNTs to have good hardening and toughening effect on the matrix. Especially when adding 6.0% CNTs by volume, the hardness and fracture toughness were improved respectively by about 25.3% and 45.7% compared to pure MoSi2. Phase identification and microstructure of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HTEM). Multi-walled CNTs were found in the powders synthesized by self-propagating high temperature synthesis (SHS) and SiC phase existed in the sintering samples. Fine grain and the favorable effect of dispersed SiC particles resulted in a high hardness of the CNTs/MoSi2 composite. The toughening mechanisms for the CNTs/MoSi2 composites included crack deflection, crack micro-bridging, crack branching, crack bowing and fine-grain pullout.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,