Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10625887 | Ceramics International | 2013 | 7 Pages |
Abstract
Porous lead zirconate titanate (PZT) ceramics could be produced by combining the particle-stabilized foams and the gelcasting technique. In this study, the foaming capacity of particle-stabilized wet foams was tailored by changing the concentration of valeric acid and pH values of suspension. Accordingly, porous PZT ceramics with different porosity, microstructure, dielectric and piezoelectric properties were prepared with the respective wet foam. Increase in the porosity led to a reduction in the relative permittivity (εr), a moderate decline in the longitudinal piezoelectric strain coefficient (d33) and a rapid decline in the transverse piezoelectric strain coefficient (d31), which endowed porous PZT ceramics with a high value of hydrostatic strain coefficient (dh) and hydrostatic figure of merit (HFOM). As a result, the prepared samples possessed a maximal HFOM value of 19,520Ã10â15 Paâ1 with the porosity of 76.3%. The acoustic impedance (Z) of specimens had the lowest value of 1.35 Mrayl, which could match well with those of water or biological tissue; accordingly, the material would be beneficial in underwater sonar detectors or medical ultrasonic imaging.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Wei Liu, Linjing Du, Yanzhong Wang, Jinlong Yang, Hong Xu,