Article ID Journal Published Year Pages File Type
10625903 Ceramics International 2013 6 Pages PDF
Abstract
To improve the mechanical properties of a porous bioceramic without reducing its porosity, a new kind of porous hydroxyapatite (HA) bioceramic with in-situ grown HA whiskers was fabricated using a simple sintering method. CaSO4·2H2O was used as a pore-forming medium and also as a catalyst for the growth of in-situ HA whiskers. The bioceramic was analyzed by XRD, SEM and mechanical tests. In-situ grown HA whiskers were stratified on the cliffs of pores in the bioceramic. The compressive strength is as high as 21.7 MPa with the porosity of about 26%. The results show that porous HA bioceramic can be improved in both compressive strength and porosity by the addition of CaSO4·2H2O. This novel HA bioceramic has a higher compressive strength without reducing its porosity in a certain weight ratio of CaSO4·2H2O, which depends on its two-step fracture pattern. This novel structure provides a new and promising reinforced pattern for porous materials.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,