Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10626221 | Ceramics International | 2011 | 6 Pages |
Abstract
A novel process has been developed for the fabrication of biomorphic silicon/silicon carbide (Si/SiC) ceramics from birch powder. Fine birch powder was hot-pressed to obtain pre-templates, which were subsequently carbonized to acquire carbon templates, and these were then converted into biomorphic Si/SiC ceramics by liquid silicon infiltration at 1550 °C. The prepared ceramics are characterized by homogeneous microstructure, high density, and superior mechanical properties compared to biomorphic Si/SiC ceramics from birch blocks. Their maximum density has been measured as 3.01 g/cm3. The microstructure is similar to that of conventional reaction-bonded silicon carbide. The Vicker's hardness, flexural strength, elastic modulus, and fracture toughness of the biomorphic Si/SiC were 19.6 ± 2.2 GPa, 388 ± 36 MPa, 364 ± 22 GPa, and 3.5 ± 0.3 MPa m1/2, respectively. The outstanding mechanical properties of the biomorphic Si/SiC ceramics are assessed to derive from the improved uniform microstructure of the pre-templates made from birch powder.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Zili Yan, Jie Liu, Jianchun Zhang, Tian Ma, Zhengcao Li,