Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10626318 | Ceramics International | 2011 | 7 Pages |
Abstract
Nanostructured zirconia coatings have been prepared by atmospherical plasma spraying (APS) on NiCrAlY-coated superalloy substrates. The isothermal oxidation test results indicate that the oxidation kinetics of nanostructured TBC follows a parabolic law and the oxidation resistance of the nanostructured TBC is comparable to that of the conventional TBC. The nanostructured thermal barrier coatings exhibit excellent thermal cyclic resistance and low thermal diffusivity. The failure of the nanostructured TBC occurs within the top coat and close to the YSZ/thermal growth oxide interface. The thermal diffusivity of the coating is 90% of that of conventional thermal barrier coatings, and it increases after heat treatment at 1050 °C for 34 h. The increase in the thermal diffusivity of the coating is ascribed to grain growth, the crack healing as well as sintering neck formation.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Qinghe Yu, Abdul Rauf, Na Wang, Chungen Zhou,