Article ID Journal Published Year Pages File Type
10626360 Ceramics International 2011 11 Pages PDF
Abstract
Silicon-substituted hydroxyapatite (Si-HA) with up to 1.8 wt% Si content was prepared successfully by a hydrothermal method, using Ca(NO3)2, (NH4)3PO4 or (NH4)2HPO4 and Si(OCH2CH3)4 (TEOS) as starting materials. Silicon has been incorporated in hydroxyapatite (HA) lattice by partially replacing phosphate (PO43−) groups with silicate (SiO44−) groups resulting in Si-HA described as Ca10(PO4)6−x(SiO4)x(OH)2−x. X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), inductively coupled plasma AES (ICP-AES) and scanning electron microscopy (SEM) techniques reveal that the substitution of phosphate groups by silicate groups causes some OH− loss to maintain the charge balance and changes the lattice parameters of HA. The crystal shape of Si-HA has not altered compared to silicon-free reference hydroxyapatite but Si-incorporation reduces the size of Si-HA crystallites. Based on in vitro tests, soaking the specimens in simulated body fluid (SBF), and MTT assays by human osteoblast-like cells, Si-substituted hydroxyapatite is more bioactive than pure hydroxyapatite.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,