Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10626377 | Ceramics International | 2011 | 7 Pages |
Abstract
Carbon/carbon-zirconium carbide (C/C-ZrC) composites were prepared by reactive melt infiltration. Carbon fiber felt was firstly densified by carbon using chemical vapor infiltration to obtain a porous carbon/carbon (C/C) skeleton. The zirconium melt was then infiltrated into the porous C/C at temperatures higher than the melting point of zirconium to obtain C/C-ZrC composites. The infiltration depth as a function of annealing temperature and dwelling time was studied. A model based on these results was built up to describe the kinetic process. The ablation properties of the C/C-ZrC were tested under an oxyacetylene torch and a laser beam. The results indicate that the linear and mass ablation rates of the C/C-ZrC composites are greatly reduced compared with C/SiC-ZrB2, C/SiC, and C/C composites. The formation of a dense layer of ZrC and ZrO2 mixture at high temperatures is the reason for high ablation resistance.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Yiguang Wang, Xiaojuan Zhu, Litong Zhang, Laifei Cheng,